Voltage Detector IC Series

Standard CMOS

Voltage Detector IC

BD48xxx series BD49xxx series

-General Description

ROHM's BD4 8xxx and B D49xxx seri es are hig hly accurate, low current cons umption reset IC series. T he line up incl udes BD48 xxx de vices with N chan nel o pen drain output a nd BD4 9xxx d evices with C MOS output. The devices are available for specific detection voltages ranging from 2.3 V to 6.0 V in increments of 0.1 V .

-Features

- High accuracy detection
- Ultra-low current consumption
- Two output types (Nch open drain and CMOS output)
- Wide Operating temperature range
- Very small and low height package
- Package SSOP5 is similar to SOT-23-5 (JEDEC)
- Package SSOP3 is similar to SOT-23-3 (JEDEC)

OKey Specifications

■ Detectio n voltage:
■ High accuracy detection voltage: $\pm 1.0 \%$

- Ultra-low current consumption:
$0.9 \mu \mathrm{~A}$ (Typ.)
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

-Package

SSOP5: $\quad 2.90 \mathrm{~mm} \times 2.80 \mathrm{~mm} \times 1.15 \mathrm{~mm}$
SSOP3: $\quad 2.90 \mathrm{~mm} \times 2.80 \mathrm{~mm} \times 1.15 \mathrm{~mm}$
VSOF5:
$1.60 \mathrm{~mm} \times 1.60 \mathrm{~mm} \times 0.60 \mathrm{~mm}$

- Applications

Circuits usin g microcontroll ers or logic circuit s that require a reset.

-Typical Application Circuit

OProduct structure:Silicon monolithic integrated circuit OThis product is not designed protection against radioactive rays.

Connection Diagram

-Pin Descriptions

OP5		
PIN No.	Symbol	Function
1 V	out Res	Output
2 V	dD Po	wer Supply Voltage
3 GNC		GND
4 N.C		Unconnected Terminal
5 N.C		Unconnected Terminal

SSOP3(1pin GND)

-Pin Descriptions

OP3-1		
PIN No.	Symbol	Function
1	GND	GND
2	Vout Rese	Output
3	VDD	Power Supply Voltage

VSOF5

TOP VIEW

VSOF5		
PIN No.	Symbol	Function
1	Vout Reset	Output
2	SUB	Substrate*
3 N.C		Unconnected Terminal
4	GND	GND
5	VDD Po	wer Supply Voltage

*Connect the substrate to GND.

SSOP3(3pin GND)

SSOP3-2		
PIN No.	Symbol	Function
1	Vout Reset	Output
2	VDD Po	wer Supply Voltage
3	GND	GND

- Ordering Information

note) Please be new and, in hope of SSOP5, choose the package 1 by "E" and package 2" G."

SSOP5

VSOF5

SSOP3

<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	3000pcs
Direction of feed	TL $\left(\begin{array}{l}\text { The direction is the 1pin of product is at the upper right when you hold } \\ \text { reel on the left hand and you pull out the tape on the right hand }\end{array}\right.$

Marking	Detection Voltage	Part Number									
EW 6.0V		BD4860	EB	4.1V	BD4841	GW	6.0 V	BD4960	GB	4.1 V	BD4941
EV 5.9 V		BD4859	EA	4.0 V	BD4840	GV	5.9 V	BD4959	GA	4.0 V	BD4940
EU 5.8V		BD4858	DV	3.9 V	BD4839	GU	5.8 V	BD4958	FV	3.9 V	BD4939
ET 5.7V		BD4857	DU	3.8 V	BD4838	GT	5.7 V	BD4957	FU	3.8 V	BD4938
ES 5.6V		BD4856	DT	3.7 V	BD4837	GS	5.6 V	BD4956	FT	3.7 V	BD4937
ER 5.5V		BD4855	DS	3.6 V	BD4836	GR	5.5 V	BD4955	FS	3.6 V	BD4936
EQ 5.4V		BD4854	DR	3.5 V	BD4835	GQ	5.4 V	BD4954	FR	3.5 V	BD4935
EP 5.3V		BD4853	DQ	3.4 V	BD4834	GP	5.3 V	BD4953	FQ	3.4 V	BD4934
EN 5.2V		BD4852	DP	3.3 V	BD4833	GN	5.2 V	BD4952	FP	3.3 V	BD4933
EM 5.1 V		BD4851	DN	3.2 V	BD4832	GM	5.1 V	BD4951	FN	3.2 V	BD4932
EL 5.9V		BD4850	DM	3.1 V	BD4831	GL	5.0 V	BD4950	FM	3.1 V	BD4931
EK 4.9V		BD4849	DL	3.0 V	BD4830	GK	4.9 V	BD4949	FL	3.0 V	BD4930
EJ4.8V		BD4848	DK	2.9 V	BD4829	GJ	4.8 V	BD4948	FK	2.9 V	BD4929
EH 4.7V		BD4847	DJ	2.8 V	BD4828	GH	4.7 V	BD4947	FJ	2.8 V	BD4928
EG 4.6V		BD4846	DH	2.7 V	BD4827	GG	4.6 V	BD4946	FH	2.7 V	BD4927
EF 4.5V		BD4845	DG	2.6 V	BD4826	GF	4.5 V	BD4945	FG	2.6 V	BD4926
EE 4.4V		BD4844	DF	2.5 V	BD4825	GE	4.4 V	BD4944	FF	2.5 V	BD4925
ED 4.3V		BD4843	DE	2.4 V	BD4824	GD	4.3 V	BD4943	FE	2.4 V	BD4924
EC 4.2V		BD4842	DD	2.3 V	BD4823	GC	4.2V	BD4942	FD	2.3 V	BD4923

Marking	Detection Voltage	Part Number									
Cm	6.0 V	BD48E60	Be	4.1V	BD48E41	Ff	6.0 V	BD49E60	Ea	4.1 V	BD49E41
Ck	5.9 V	BD48E59	Bd	4.0 V	BD48E40	Fe	5.9 V	BD49E59	Dy	4.0 V	BD49E40
Ch	5.8 V	BD48E58	Bc	3.9 V	BD48E39	Fd	5.8 V	BD49E58	Dr	3.9 V	BD49E39
Cg	5.7V	BD48E57	Bb	3.8 V	BD48E38	Fc	5.7 V	BD49E57	Dp	3.8 V	BD49E38
Cf	5.6 V	BD48E56	Ba	3.7 V	BD48E37	Fb	5.6 V	BD49E56	Dn	3.7 V	BD49E37
Ce	5.5 V	BD48E55	Ay	3.6 V	BD48E36	Fa	5.5 V	BD49E55	Dm	3.6 V	BD49E36
Cd	5.4 V	BD48E54	Ar	3.5 V	BD48E35	Ey	5.4 V	BD49E54	Dk	3.5 V	BD49E35
Cc	5.3 V	BD48E53	Ap	3.4 V	BD48E34	Er	5.3 V	BD49E53	Dh	3.4 V	BD49E34
Cb	5.2 V	BD48E52	An	3.3 V	BD48E33	Ep	5.2 V	BD49E52	Dg	3.3 V	BD49E33
Ca	5.1 V	BD48E51	Am	3.2 V	BD48E32	En	5.1 V	BD49E51	Df	3.2 V	BD49E32
By	5.0 V	BD48E50	Ak	3.1 V	BD48E31	Em	5.0 V	BD49E50	De	3.1 V	BD49E31
Br	4.9 V	BD48E49	Ah	3.0 V	BD48E30	Ek	4.9 V	BD49E49	Dd	3.0 V	BD49E30
Bp	4.8 V	BD48E48	Ag	2.9 V	BD48E29	Eh	4.8 V	BD49E48	Dc	2.9 V	BD49E29
Bn	4.7 V	BD48E47	Af	2.8 V	BD48E28	Eg	4.7 V	BD49E47	Db	2.8 V	BD49E28
Bm	4.6 V	BD48E46	Ae	2.7 V	BD48E27	Ef	4.6 V	BD49E46	Da	2.7 V	BD49E27
Bk	4.5 V	BD48E45	Ad	2.6 V	BD48E26	Ee	4.5 V	BD49E45	Cy	2.6 V	BD49E26
Bh	4.4 V	BD48E44	Ac	2.5 V	BD48E25	Ed	4.4 V	BD49E44	Cr	2.5 V	BD49E25
Bg	4.3 V	BD48E43	Ab	2.4 V	BD48E24	Ec	4.3 V	BD49E43	Cp	2.4 V	BD49E24
Bf	4.2 V BD	48E42	Aa	2.3 V	BD48E23	Eb	4.2 V	BD49E42	Cn	2.3 V	BD49E23

Marking	Detection Voltage	Part Number	Marking	Detection Voltage	Part Number	Marking	Detection Voltage	Part	Marking	Detection Voltage	Part Number
Cm	6.0V BD48K60		Be	4.1V BD48K41		Ff	6.0V BD49K60		Ea	4.1 V	BD49K41
Ck	5.9V BD48K59		Bd	4.0 V BD	48K40	Fe	5.9 V BD	K59	Dy	4.0 V	BD49K40
Ch	5.8 V BD48K58		Bc	3.9 V BD	48K39	Fd	5.8 V BD	K58	Dr	3.9 V	BD49K39
Cg	5.7V BD48K57		Bb	3.8 V BD	48K38	Fc	5.7 V BD	K57	Dp	3.8 V	BD49K38
Cf	5.6V BD48K56		Ba	3.7 V BD	48K37	Fb	5.6 V BD	K56	Dn	3.7 V	BD49K37
Ce	5.5V BD48K55		Ay	3.6 V BD	48K36	Fa	5.5 V BD	K55	Dm	3.6 V	BD49K36
Cd	5.4V BD48K54		Ar	3.5 V BD	48K35	Ey	5.4 V BD	K54	Dk	3.5 V	BD49K35
Cc	5.3V BD48K53		Ap	3.4 V BD	48K34	Er	5.3 V BD	K53	Dh	3.4 V	BD49K34
Cb	5.2V BD48K52		An	3.3 V BD	48K33	Ep	5.2 V BD	K52	Dg	3.3 V	BD49K33
Ca	5.1V BD48K51		Am	3.2 V BD	48K32	En	5.1 V BD	K51	Df	3.2 V	BD49K32
By	5.0V BD48K50		Ak	3.1 V BD	48K31	Em	5.0 V BD	K50	De	3.1 V	BD49K31
Br	4.9V BD48K49		Ah	3.0 V BD	48K30	Ek	4.9 V BD	K49	Dd	3.0 V	BD49K30
Bp	4.8 V BD48K48		Ag	2.9 V BD	48K29	Eh	4.8 V BD	K48	Dc	2.9 V	BD49K29
Bn	4.7V BD48K47		Af	2.8 V BD	48K28	Eg	4.7 V BD	K47	Db	2.8 V	BD49K28
Bm	4.6V BD48K46		Ae	2.7 V BD	48K27	Ef	4.6 V BD	K46	Da	2.7 V	BD49K27
Bk	4.5 V BD48K45		Ad	2.6 V BD	48K26	Ee	4.5 V BD	K45	Cy	2.6 V	BD49K26
Bh	4.4V BD48K44		Ac	2.5 V BD	48K25	Ed	4.4 V BD	K44	Cr	2.5 V	BD49K25
Bg	4.3V BD48K43		Ab	2.4 V BD	48K24	Ec	4.3 V BD	K43	Cp	2.4 V	BD49K24
Bf	4.2V BD48K42		Aa	2.3 V BD	48K23	Eb	4.2 V BD	K42	Cn	2.3 V	BD49K23

Marking	Detection Voltage	Part Number									
Kb	6.0V BD48L60		Gn	4.1V BD48L41		Np	6.0V BD49L60		Mg	4.1 V	BD49L41
Ka	5.9V BD48L59		Gm	4.0 VBD	48L40	Nn	5.9 V BD	9L59	Mf	4.0 V	BD49L40
Hy	5.8V BD48L58		Gk	3.9 VBD	48L39	Nm	5.8 V BD	9L58	Me	3.9 V	BD49L39
Hr	5.7V BD48L57		Gh	3.8 V BD	48L38	Nk	5.7 V BD	9L57	Md	3.8 V	BD49L38
Hp	5.6V BD48L56		Gg	3.7 V BD	48L37	Nh	5.6 V BD	9L56	Mc	3.7 V	BD49L37
Hn	5.5 V BD48L55		Gf	3.6 V BD	48L36	Ng	5.5 V BD	9L55	Mb	3.6 V	BD49L36
Hm	5.4 V BD48L54		Ge	3.5 V BD	48L35	Nf	5.4 V BD	9L54	Ma	3.5 V	BD49L35
Hk	5.3V BD48L53		Gd	3.4 V BD	48L34	Ne	5.3 V BD	9L53	Ky	3.4 V	BD49L34
Hh	5.2V BD48L52		Gc	3.3 V BD	48L33	Nd	5.2 V BD	9L52	Kr	3.3 V	BD49L33
Hg	5.1V BD48L51		Gb	3.2 V BD	48L32	Nc	5.1 V BD	9L51	Kp	3.2 V	BD49L32
Hf	5.0V BD48L50		Ga	3.1 V BD	48L31	Nb	5.0 V BD	9L50	Kn	3.1 V	BD49L31
He	4.9 V BD48L49		Fy	3.0 V BD	48L30	Na	4.9 V BD	9L49	Km	3.0 V	BD49L30
Hd	4.8 V BD48L48		Fr	2.9 V BD	48L29	My	4.8 V BD	$9 \mathrm{L48}$	Kk	2.9 V	BD49L29
Hc	4.7V BD48L47		Fp	2.8 V BD	48L28	Mr	4.7 V BD	9L47	Kh	2.8 V	BD49L28
Hb	4.6V BD48L46		Fn	2.7 V BD	48L27	Mp	4.6 V BD	9L46	Kg	2.7 V	BD49L27
Ha	4.5 V BD48L45		Fm	2.6 V BD	48L26	Mn	4.5 V BD	9L45	Kf	2.6 V	BD49L26
Gy	4.4 V BD48L44		Fk	2.5 V BD	48L25	Mm	4.4 V BD	9L44	Ke	2.5 V	BD49L25
Gr	4.3 V BD48L43		Fh	2.4 V BD	48L24	Mk	4.3 V BD	9L43	Kd	2.4 V	BD49L24
Gp	4.2V BD48L42		Fg	2.3 VBD	48L23	Mh	4.2 V BD	9L42	Kc	2.3 V	BD49L23

- Absolute Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Parameter S		ymbol	Limits	Unit
Power Supply Voltage		$\mathrm{V}_{\text {DD }}$-GND	-0.3 to +10	V
Output Voltage	Nch Open Drain Output	Vout	GND-0.3 to +10	V
	CMOS Output		GND-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Power Dissipation	SSOP5	Pd		mW
	VSOF5 ${ }^{*}{ }^{* 3}$		210	
Operating Temperature		Topr	-40 to +105	${ }^{\circ} \mathrm{C}$
Ambient Storage Temperature		Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

*1 Use above $\mathrm{Ta}=25^{\circ} \mathrm{C}$ results in a 5.4 mW loss per degree.
*2 Use above $\mathrm{Ta}=25^{\circ} \mathrm{C}$ results in a 2.1 mW loss per degree.
*3 When a ROHM standard circuit board ($70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass epoxy board) is mounted.
-Electrical Characteristics (Unless Otherwise Specified Ta=-40 to $105^{\circ} \mathrm{C}$)

Parameter S	ymbol	Condition		Limit			Unit
				Min. T	yp.	Max.	
Detection Voltage	$V_{\text {det }} \mathrm{R}$	L=470k $\Omega, \mathrm{VdD}=\mathrm{H} \rightarrow \mathrm{L}$ (${ }^{\text {a }}$		$\begin{gathered} \mathrm{V}_{\mathrm{DET}}(\mathrm{~T}) \\ \times 0.99 \end{gathered}$	$V_{\text {det }}(\mathrm{T})$	$\begin{gathered} \mathrm{V}_{\mathrm{DET}}(\mathrm{~T}) \\ \times 1.01 \end{gathered}$	V
Output Delay Time " $\llcorner\rightarrow \mathrm{H}$ " t	PLH	$\begin{aligned} & \text { CL=100pF RL=100k } \Omega \\ & \text { Vout }=G N D \rightarrow 50 \% \end{aligned}$		- -		100	$\mu \mathrm{s}$
Circuit Current when ON	Icc1 V	$\mathrm{dD}=\mathrm{V}_{\mathrm{DET}}-0.2 \mathrm{~V}{ }^{* 1}$	$\mathrm{V}_{\text {DET }}=2.3-3.1 \mathrm{~V}$ -		0.51	1.53	$\mu \mathrm{A}$
			$V_{\text {DET }}=3.2-4.2 \mathrm{~V}$ -		0.56	1.68	
			$V_{\text {DET }}=4.3-5.2 \mathrm{~V}$ -		0.60	1.80	
			$V_{\text {DET }}=5.3-6.0 \mathrm{~V}$ -		0.66	1.98	
Circuit Current when OFF	Icc2 V	$\mathrm{DD}=\mathrm{V}_{\mathrm{DET}}+2.0 \mathrm{~V}{ }^{* 1}$	$\mathrm{V}_{\mathrm{DET}}=2.3-3.1 \mathrm{~V}$ -		0.75	2.25	$\mu \mathrm{A}$
			$V_{\text {DET }}=3.2-4.2 \mathrm{~V}$ -		0.80	2.40	
			$\mathrm{V}_{\text {DET }}=4.3-5.2 \mathrm{~V}$ -		0.85	2.55	
			$\mathrm{V}_{\text {DET }}=5.3-6.0 \mathrm{~V}$ -		0.90	2.70	
Operating Voltage Range	VopL	Vol $\leq 0.4 \mathrm{~V}, \mathrm{Ta}=25$ to $105^{\circ} \mathrm{C}, \mathrm{RL}=470 \mathrm{k} \Omega 0.95$			-	-	V
		Vol $\leq 0.4 \mathrm{~V}, \mathrm{Ta}=-40$ to $25^{\circ} \mathrm{C}, \mathrm{RL}=470 \mathrm{k} \Omega 1.20$			-	-	
'Low'Output Current (Nch)	IOL	VDS $=0.5 \mathrm{~V}$, VDD $=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DET}}=2.3-6.0 \mathrm{~V} 0.4$			1.0	-	mA
		Vds $=0.5 \mathrm{~V}$, Vdd $=2.4$	$\mathrm{DET}^{\text {a }}$ 2.7-6.0V 2.0		4.0	-	
'High'Output Current (Pch) (BD49xxx Series)	Іон	V ds $=0.5 \mathrm{~V}$, Vdd $=4.8$	DET $=2.3-4.2 \mathrm{~V}$	0.7	1.4	-	mA
		$\mathrm{V} D=0.5 \mathrm{~V}, \mathrm{VDD}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DET}}=4.3-5.2 \mathrm{~V}$		0.9	1.8	-	
		$\mathrm{VDS}=0.5 \mathrm{~V}, \mathrm{VDD}=8.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DET}}=5.3-6.0 \mathrm{~V}$		1.1	2.2	-	
Leak Current when OFF (BD48xxx Series)	$l_{\text {leak }} \mathrm{V}$	$D \mathrm{D}=\mathrm{V} \mathrm{DS}=10 \mathrm{~V}$		--		0.1	$\mu \mathrm{A}$
Detection Voltage Temperature coefficient	$V_{\text {DET }} / \Delta \mathrm{T}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ (Designed Guarantee)		- ± 10	0	± 360	ppm $/{ }^{\circ} \mathrm{C}$
Hysteresis Voltage	$\Delta \mathrm{V}_{\text {det }} \mathrm{V}$	$D D=L \rightarrow H \rightarrow L V$		DET $\times 0.03$	$\mathrm{DET} \times 0.05$	DET $\times 0.08$	V

$V_{\text {DET }}(\mathrm{T})$: Standard Detection Voltage(2.3V to $6.0 \mathrm{~V}, 0.1 \mathrm{~V}$ step)
R_{L} : Pull-up resistor to be connected between Vout and power supply.
C_{L} : Capacitor to be connected between Vout and GND.
Designed Guarantee. (Outgoing inspection is not done on all products.)
*1 Guar antee is $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
*2 tPLH:VDD=(V $\mathrm{V}_{\text {DET }}$ typ. $\left.-0.5 \mathrm{~V}\right) \rightarrow\left(\mathrm{V}_{\text {DET }}\right.$ typ.+0.5V)

- Block Diagrams

Fig. 1 BD48xxx series

Fig. 2 BD49xxx series

- Typical Performance Curves

Fig. 3 Circuit Current

Fig. 5 "High" Output Current

Fig. 4 "Low" Output Current

Fig. 6 I/O Characteristics

Fig. 7 Operating Limit Voltage

Fig. 9 Circuit Current when ON

Fig. 8 Detection Voltage Release Voltage

Fig. 10 Circuit Current when OFF

Fig. 11 Operating Limit Voltage

-Application Information

Explanation of Operation

For both the open dra in type (Fig.12) and the CMOS out put type (Fig.13), the detection and releas e voltages are used as threshold volt ages. When t he voltage ap plied to the V_{DD} pins reach es the applicable threshold volt age, the $\mathrm{V}_{\text {out }}$ terminal voltage s witches from either "High" to "Lo w" or from "Low" to "High". Please refer to the Timing Waveform and Electrical Characteristics for information on hysteresis.
Because the BD48xxx series uses an open drain output type, it is poss ible to connect a pull-up resistor to $V_{D D}$ or another power supply [The output "High" voltage ($\mathrm{V}_{\mathrm{OUT}}$) in this case becomes V_{DD} or the voltage of the other power supply].

Fig. 12 (BD48xxx series Internal Block Diagram)

Fig. 13 (BD49xxx series Internal Block Diagram)

Reference Data

Examples of Leading ($\mathrm{t}_{\text {PLH }}$) and Falling ($\mathrm{t}_{\text {PHL }}$) Output

Part Number	$\mathrm{t}_{\text {PLH }}(\mu \mathrm{s}) \mathrm{t}$	PHL $(\mu \mathrm{s})$
BD48×45	39.5	87.8
BD49×45	32.4	52.4

$V_{D D}=4.3 \mathrm{~V} \rightarrow 5.1 \mathrm{~V} \quad V_{D D}=5.1 \mathrm{~V} \rightarrow 4.3 \mathrm{~V}$
*This data is for reference only.
The figures will vary with the application, so please confirm actual operating conditions before use.

Timing Waveform

Example: the following shows the relationship between the input voltages $V_{D D}$ and the output voltage $V_{\text {out }}$ when the input power supply voltage $V_{D D}$ is made to sweep up and sweep down (the circuits are those in Fig. 12 and 13).

Vdd

Fig. 14 Timing Waveform
(1) When the power supply is turned on, the output is unsettled from after over the operating limit voltage $\left(\mathrm{V}_{\text {OPL }}\right)$ until $\mathrm{t}_{\text {PHL }}$. Therefore it is possible that the reset signal is not valid when the rise time of $V_{D D}$ is faster than $\mathrm{t}_{\text {PHL }}$.
(2) When $V_{D D}$ is greater than $V_{O P L}$ but less than the reset release voltage $\left(\mathrm{V}_{\mathrm{DET}}+\Delta \mathrm{V}_{\mathrm{DET}}\right)$, the output voltages will switch to Low.
(3) If $V_{D D}$ exce eds the reset releas e volt age $\left(V_{D E T}+\Delta V_{D E T}\right)$, then $V_{\text {out }}$ switches from L to H.
(4) If $V_{D D}$ drops below the detection voltage $\left(V_{D E T}\right)$ when the power supply is powered down or when there is a power supply fluctuation, $V_{\text {out }}$ switches to L (with a delay of $t_{\text {PHL }}$).
(5) The potential difference between the detection voltage and the release volt age is kno wn a st he h ysteresis width ($\Delta \mathrm{V}_{\mathrm{DET}}$). T he system is designed such that the output does not flip-flop with power supply fluctuations within this hysteresis width, preventing malfunctions due to noise.

- Circuit Applications

Examples of a common power supply detection reset circuit.

Fig. 15 Open Drain Output Type

Fig. 16 CMOS Output Type

Application e xamples of BD48 xxx seri es (Open Drai n output type) and BD49xxx series (CMOS output type) are shown below.

CASE1: the po wer suppl y of the microcontroller ($\begin{aligned} & \mathrm{DD} 2 \text {) }\end{aligned}$ differs from the power supply of the reset detection ($\mathrm{V}_{\mathrm{DD} 1}$). Use a n o pen drain out put type (BD 48xxx) device with a load resistance R_{L} attached as shown in figure 15.

CASE2: the power supply of the microc ontroller $\left(\mathrm{V}_{\mathrm{DD} 1}\right)$ is same as the power supply of the reset detection ($\mathrm{V}_{\mathrm{DD} 1}$). Use a CMOS output type (B D49xxx) device or a n open drain device with a pul I up r esistor bet ween out put a nd VDD1.

When a ca pacitance C_{L} for noise filtering is connected to the V оut pin (t he reset signa I inp ut erminal of t he microcontroller), please take into account the waveform of the rise and fall of the output voltage ($\mathrm{V}_{\mathrm{OUT}}$).

The Electrical characteristics were measured using $R_{L}=470 \mathrm{k} \Omega$ and $C_{L}=100 \mathrm{pF}$.

-Operational Notes

1. Absolute maximum range

Absolute Maximum Ratings are those values beyond which the life of a device may be destroyed. We cannot be defined the failure mode, such as short mode or open mode. Therefore a physical security countermeasure, like fuse, is to be given when a specific mode to be beyond absolute maximum ratings is considered.
2. GND potential

GND terminal should be a lowest voltage potential every state.
Please make sure all pins, which are over ground even if, include transient feature.
3. Electrical Characteristics

Be sure to check the electrical characteristics that are one the tentative specification will be changed by temperature, supply voltage, and external circuit.

4 . Bypass Capacitor for Noise Rejection
Please put into the capacitor of $1 \mu \mathrm{~F}$ or more between $\mathrm{V}_{\text {DD }}$ pin and GND, and the capacitor of about 1000 pF between $V_{\text {out }}$ pin and GND, to reject noise. If extremely big capacitor is used, transient response might be late. Please confirm sufficiently for the point.

5 . Short Circuit between Terminal and Soldering
Don't short-circuit between Output pin and $V_{D D}$ pin, Output pin and GND pin, or $V_{D D}$ pin and GND pin. When soldering the IC on circuit bo ard, pleas e be unus ually c autious ab out the orient ation and the position of t he $I C$. When t he ori entation is mistaken the IC may be destroyed.

6 . Electromagnetic Field
Mal-function may happen when the device is used in the strong electromagnetic field.
7. The $V_{D D}$ line inpedance might cause oscillation because of the detection current.
8. $A V_{D D}-G N D$ capacitor (as close connection as possible) should be used in high VDD line impedance condition.

9 . Lower than the mininum input voltage makes the Vout high impedance, and it must be VDD in pull up (VDD) condition.
10. This IC has extremely high impedance terminals. Small leak current due to the uncleanness of PCB surface might cause unexpected o perations. Appli cation values in these conditions should be selected care fully. If the leakage is assum ed between the $V_{\text {out }}$ terminal and the GND terminal, the pull-up resistor should be less than $1 / 10$ of the assumed leak age resistance.

11. Ex ternal parameters

The recommended p arameter ran ge for R_{L} is $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. There are man y factors (board la yout, etc) that can affect characteristics. Please verify and confirm using practical applications.

12. Power on reset operation

Please note that the power on reset output varies with the $V_{D D}$ rise up time. Please verify the actual operation.

13. Precautions for board inspection

Connecting low-impedance capacitors to run inspections with the board may produce stress on the IC. Therefore, be certain to use proper discharge procedure before each process of the test operation.
To prevent el ectrostatic acc umulation a nd dischar ge in t he assembly proc ess, t horoughly gr ound yourself a nd an y equipment that could sustain ESD damage, and continue observing ESD-prevention procedures in all handing, transfer and storage operations. Before attempting to connect components to the test setup, make certain that the power supply is OFF. Likewise, be sure the power supply is OFF before removing any component connected to the test setup.
14. When the power supply, is turned on be cause of in cer tain cases, momentary Rash-current flow into the IC at the logic unsettled, the couple capacitance, GND pattern of width and leading line must be considered.

Status of this document

The Japanese version of this document is formal specification. A customer may use this translation version only for a reference to help reading the formal version.
If there are any differences in translation version of this document formal version takes priority.

Notice

-General Precaution

1) Before you us e our Pro ducts, you are requested to care fully re ad this document and fully understand its conte nts. ROHM shall n ot be in an y way res ponsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
2) All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasi ng or using ROHM's Product s , pleas e confirm the la test information with a ROHM sale s representative.

Precaution on using ROHM Products

1) Our Products are designed and manufactured for application in ordinary electronic equipments (such as $A V$ equipment, OA equipm ent, telecommun ication e quipment, home el ectronic ap pliances, amuseme nt equi pment, etc.). If y ou intend to us e our Pro ducts in dev ices requiring e xtremely high rel iability (suc h as m edical e quipment, transp ort equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safet y d evices, etc.) and whose malfunction or failure ma y caus e loss of human I ife, bodil y injury or serious damage to propert y ("Specific Ap plications"), please consult with the ROHM sal es representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in an y way responsible or liable for a ny damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
2) ROHM desig ns and man ufactures its Products subj ect to strict qualit y co ntrol s ystem. Ho wever, semicon ductor products can fail or malfunction at a certain rate. Please be sure to im plement, at your own responsibilities, adequate safety measures including but not limited to fail-safe d esign against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3) Our Products are des igned and ma nufactured for us e und er stand ard cond itions and not under an y spec ial or extraordinary environments or cond itions, as e xemplified b elow. Ac cordingly, RO HM shal I not be in any way responsible or liab le for an y damages, expenses or losses arising from the use of an y ROHM's Products under an y special or e xtraordinary e nvironments or conditi ons. If you inten d to use our Pr oducts un der any spec ial or extraordinary environments or conditio ns (as exem plified bel ow), your inde pendent verification an d confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in pla ces where the Products are exposed to sea wind or corrosive gases, including Cl_{2}, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO} 2$, and NO_{2}
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or W ashing our Pr oducts by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4) The Products are not subject to radiation-proof design.
5) Please verify and confirm characteristics of the final or mounted products in using the Products.
6) In particular, if a transient load (a large am ount of load a pplied in a sho rt period of time, such as pulse) is applie d, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7) De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
8) Confirm that operation temperature is within the specified range described in the product specification.
9) ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

-Precaution for Mounting / Circuit board design

1) When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2) In principle, the reflo w soldering method must be used; if flow soldering method is pref erred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification
-Precautions Regarding Application Examples and External Circuits

1) If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Prod ucts and e xternal com ponents, including transient ch aracteristics, as well as stati c characteristics.
2) You agree that application notes, reference designs, and a ssociated data and information contained in this document are prese nted onl y as g uidance for Prod ucts use. Therefore, in cas e you use su ch informatio n , you are sol ely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

-Precaution for Electrostatic

This Product is electrostatic sensitive pro duct, which may be damaged due to electrostatic discharg e. Please take pro per caution in your manufacturing process and storage so th at voltage e xceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

- Precaution for Storage / Transportation

1) Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including $\mathrm{Cl} 2, \mathrm{H} 2 \mathrm{~S}, \mathrm{NH} 3, \mathrm{SO} 2$, and NO 2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2) Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is stron gly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3) Store / transpo rt cartons in the co rrect direction, which is in dicated on a carton with a s ymbol. Otherwise bent le ads may occur due to excessive stress applied when dropping of a carton.
4) Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.
-Precaution for Product Label
QR code printed on ROHM Products label is for ROHM's internal use only.

- Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

- Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall und er controlled goods prescribed by the a pplicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

- Precaution Regarding Intellectual Property Rights

1) All information and data incl uding but not limited to appl ication example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of an y third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

- Other Precaution

1) The information contained in this doc ument is provi ded on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred by you or third parties resulting from inaccur acy or errors of or concerning such information.
2) This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
3) The Products may not be dis assembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
4) In no event shall you use in any way whatsoever the Products and the r elated technical information contained in the Products or this document for any military purposes, including but not limited to, the dev elopment of mass-destruction weapons.
5) The proper na mes of comp anies or pro ducts described in this document are trademarks or registered t rademarks of ROHM, its affiliated companies or third parties.
